
PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

UNIT III

What is JavaScript?

JavaScript is a very powerful client-side scripting language. JavaScript is used mainly for

enhancing the interaction of a user with the webpage. In other words, you can make your

webpage more lively and interactive, with the help of JavaScript. JavaScript is also being used

widely in game development and Mobile application development.

You should place all your JavaScript code within <script> tags(<script> and </script>) if you

are keeping your JavaScript code within the HTML document itself. You have to use the type

attribute within the <script> tag and set its value to text/javascript like this:

<script type="text/javascript">
Hello World Example:

<html>
<head>
 <title>My First JavaScript code!!!</title>
 <script type="text/javascript">
 alert("Hello World!");
 </script>
</head>

https://www.guru99.com/mobile-testing.html

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

<body>
</body>
</html>

JavaScript Variables

Variables are used to store values (name = "John") or expressions (sum = x + y).

Declaration of variable:

var name;

Assigning value to variable:

var name;
name = "John";

One Statement, Many Variables:

You can declare many variables in one statement.

Start the statement with var and separate the variables by comma:

var person = "John Doe", carName = "Volvo", price = 200;

A declaration can span multiple lines:

var person="John Doe",
carName="Volvo",
price=200;

Re-Declaring JavaScript Variables

If you re-declare a JavaScript variable, it will not lose its value.

The variable carName will still have the value "Volvo" after the execution of these

statements:

Example

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

var carName = "Volvo";
var carName;

Naming Variables: Though you can name the variables as you like, it is a good programming

practice to give descriptive and meaningful names to the variables. Moreover, variable names

should start with a letter and they are case sensitive. Hence the variables student name and

studentName are different because the letter n in a name is different (n and N).

Consider following example for variables:-

<html>
<head>
<title>Variables!!!</title>
<script type="text/javascript">
var one = 22;
var two = 3;
var add = one + two;
var minus = one - two;
var multiply = one * two;
var divide = one/two;
 document.write("First No: = " + one + "
Second No: = " + two
+ "
");
 document.write(one + " + " + two + " = " + add + "
");
 document.write(one + " - " + two + " = " + minus + "
");
 document.write(one + " * " + two + " = " + multiply + "
");
 document.write(one + " / " + two + " = " + divide + "
");
</script>
</head>
<body>
</body>
</html>

JAVASCRIPT FUNCTIONS

What is Function in JavaScript?

Functions are very important and useful in any programming language as they make the code

reusable. A function is a block of code which will be executed only if it is called. If you have a

few lines of code that needs to be used several times, you can create a function including the

repeating lines of code and then call the function wherever you want.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

How to Create a Function in JavaScript

Use the keyword function followed by the name of the function.

After the function name, open and close parentheses.

After parenthesis, open and close curly braces.

Within curly braces, write your lines of code.

 Syntax:

function functionname() {
 lines of code to be executed
}

Consider the following example:-

<html>
<head>
 <title>Functions!!!</title>
 <script type="text/javascript">
 function myFunction()
 {
 document.write("This is a simple function.
");
 }
 myFunction();
 </script>
</head>
<body>
</body>
</html>

Function with Arguments

You can create functions with arguments as well. Arguments should be specified within

parenthesis

Syntax:

function functionname(arg1, arg2)
{
 lines of code to be executed
}

Consider the following example:-

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

<html>
<head>
 <script type="text/javascript">
 var count = 0;
 function countVowels(name)
 {
 for (var i=0;i<name.length;i++)
 {
 if(name[i] == "a" || name[i] == "e" || name[i] == "i" ||
name[i] == "o" || name[i] == "u")
 count = count + 1;
 }
 document.write("Hello " + name + "!!! Your name has " +
count + " vowels.");
 }
 var myName = prompt("Please enter your name");
 countVowels(myName);
 </script>
</head>
<body>
</body>
</html>

JavaScript Return Value

You can also create JS functions that return values. Inside the function, you need to use the

keyword return followed by the value to be returned.

Syntax:

function functionname(arg1, arg2)
{
 lines of code to be executed
 return val1;
}

Example:-

<html>
<head>
 <script type="text/javascript">
 function returnSum(first, second)
 {
 var sum = first + second;
 return sum;

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

 }
 var firstNo = 78;
 var secondNo = 22;
 document.write(firstNo + " + " + secondNo + " = " +
returnSum(firstNo,secondNo));
 </script>
</head>
<body>
</body>
</html>

JavaScript Operators

The Assignment Operator

In JavaScript, the equal sign (=) is an "assignment" operator, not an "equal to" operator. This is

different from algebra. The following does not make sense in algebra:

x = x + 5

In JavaScript, however, it makes perfect sense: it assigns the value of x + 5 to x.

(It calculates the value of x + 5 and puts the result into x. The value of x is incremented by 5.)

The "equal to" operator is written like == in JavaScript.

The assignment operator (=) assigns a value to a variable.

Assignment:-

var x = 10;

The addition operator (+) adds numbers:

Adding

var x = 5;
var y = 2;
var z = x + y;

The multiplication operator (*) multiplies numbers.

Multiplying

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

var x = 5;
var y = 2;
var z = x * y;

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers:

 Operator Description

 + Addition

 - Subtraction

 * Multiplication

 ** Exponentiation

 / Division

 % Modulus

 ++ Increment

 -- Decrement

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

 Operator Example Same As

 = x = y x = y

 += x += y x = x + y

 -= x -= y x = x - y

 *= x *= y x = x * y

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

 /= x /= y x = x / y

 %= x %= y x = x % y

JavaScript String Operators

The + operator can also be used to add (concatenate) strings.

Example

var txt1 = "John";
var txt2 = "Doe";
var txt3 = txt1 + " " + txt2;

The result of txt3 will be:

John Doe

The += assignment operator can also be used to add (concatenate) strings:

Example

var txt1 = "What a very ";
txt1 += "nice day";

The result of txt1 will be:

What a very nice day

Adding Strings and Numbers

Adding two numbers, will return the sum, but adding a number and a string will return a string:

Example

var x = 5 + 5;
var y = "5" + 5;
var z = "Hello" + 5;

The result of x, y, and z will be:

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

10

55

Hello5

JavaScript Logical Operators

Operator Description

&& logical and

|| logical or

! logical not

JavaScript Comparison Operators

Operator Description

== equal to

=== equal value and equal type

!= not equal

!== not equal value or not equal type

> greater than

< less than

>= greater than or equal to

<= less than or equal to

? ternary operator

JavaScript Type Operators

 Operator Description

 typeof Returns the type of a variable

 instanceof Returns true if an object is an instance of an object type

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Operators and Operands

The numbers (in an arithmetic operation) are called operands.

The operation (to be performed between the two operands) is defined by an operator.

 Operand Operator Operand

 100 + 50

Operator Precedence

Operator precedence describes the order in which operations are performed in an arithmetic

expression.

Example

var x = 100 + 50 * 3;

Is the result of example above the same as 150 * 3, or is it the same as 100 + 150?

Is the addition or the multiplication done first?

As in traditional school mathematics, the multiplication is done first.

Multiplication (*) and division (/) have higher precedence than addition (+) and subtraction (-

).

And (as in school mathematics) the precedence can be changed by using parentheses:

Example

var x = (100 + 50) * 3;

When using parentheses, the operations inside the parentheses are computed first.

When many operations have the same precedence (like addition and subtraction), they are

computed from left to right:

Example

var x = 100 + 50 - 3;

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

JavaScript Conditional Statements: IF, Else, Else IF

How to use Conditional Statements

Conditional statements are used to decide the flow of execution based on different conditions. If

a condition is true, you can perform one action and if the condition is false, you can perform

another action.

Different Types of Conditional Statements

There are mainly three types of conditional statements in JavaScript.

If statement

If…Else statement

If…Else If…Else statement

If statement

Syntax:

if (condition)

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

{

lines of code to be executed if condition is true

}

You can use If statement if you want to check only a specific condition.

Example:-

<html>
<head>
 <title>IF Statments!!!</title>
 <script type="text/javascript">
 var age = prompt("Please enter your age");
 if(age>=18)
 document.write("You are an adult
");
 if(age<18)
 document.write("You are NOT an adult
");
 </script>
</head>
<body>
</body>
</html>

If…Else statement

Syntax:

if (condition)
{
lines of code to be executed if the condition is true
}
else
{
lines of code to be executed if the condition is false
}

You can use If….Else statement if you have to check two conditions and execute a different set

of codes.

Example:-

<html>

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

<head>
 <title>If...Else Statments!!!</title>
 <script type="text/javascript">
 // Get the current hours
 var hours = new Date().getHours();
 if(hours<12)
 document.write("Good Morning!!!
");
 else
 document.write("Good Afternoon!!!
");
 </script>
</head>
<body>
</body>
</html>

If…Else If…Else statement

Syntax:

if (condition1)
{

lines of code to be executed if condition1 is true
}
else if(condition2)
{

lines of code to be executed if condition2 is true
}
else
{

lines of code to be executed if condition1 is false and
condition2 is false
}

You can use If….Else If….Else statement if you want to check more than two conditions.

Example:-

<html>
<head>
 <script type="text/javascript">
 var one = prompt("Enter the first number");
 var two = prompt("Enter the second number");
 one = parseInt(one);
 two = parseInt(two);
 if (one == two)

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

 document.write(one + " is equal to " + two + ".");
 else if (one<two)
 document.write(one + " is less than " + two + ".");
 else
 document.write(one + " is greater than " + two + ".");
 </script>
</head>
<body>
</body>
</html>

JavaScript Switch Statement

The switch statement is used to perform different actions based on different conditions.

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {
 case x:
 // code block
 break;
 case y:
 // code block
 break;
 default:
 // code block
}

This is how it works:

The switch expression is evaluated once.

The value of the expression is compared with the values of each case.

If there is a match, the associated block of code is executed.

Example

The getDay() method returns the weekday as a number between 0 and 6.

(Sunday=0, Monday=1, Tuesday=2 ..)

This example uses the weekday number to calculate the weekday name:

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

switch (new Date().getDay()) {
 case 0:
 day = "Sunday";
 break;
 case 1:
 day = "Monday";
 break;
 case 2:
 day = "Tuesday";
 break;
 case 3:
 day = "Wednesday";
 break;
 case 4:
 day = "Thursday";
 break;
 case 5:
 day = "Friday";
 break;
 case 6:
 day = "Saturday";
}
The result of day will be:

Monday

JavaScript For Loop

Loops can execute a block of code a number of times. Loops are handy, if you want to run the

same code over and over again, each time with a different value.

Often this is the case when working with arrays:

Instead of writing:

text += cars[0] + "
";
text += cars[1] + "
";
text += cars[2] + "
";
text += cars[3] + "
";
text += cars[4] + "
";
text += cars[5] + "
";

You can write:

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

var i;
for (i = 0; i < cars.length; i++) {
 text += cars[i] + "
";
}
Different Kinds of Loops

JavaScript supports different kinds of loops:

for - loops through a block of code a number of times

for/in - loops through the properties of an object

while - loops through a block of code while a specified condition is true

do/while - also loops through a block of code while a specified condition is true

The For Loop

The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {
 // code block to be executed
}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

Example

for (i = 0; i < 5; i++) {
 text += "The number is " + i + "
";
}

From the example above, you can read:

Statement 1 sets a variable before the loop starts (var i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5).

Statement 3 increases a value (i++) each time the code block in the loop has been executed.

The For/In Loop

The JavaScript for/in statement loops through the properties of an object:

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Example

var person = {fname:"John", lname:"Doe", age:25};

var text = "";
var x;
for (x in person) {
 text += person[x];
}

The While Loop

The while loop loops through a block of code as long as a specified condition is true.

Syntax

while (condition) {
 // code block to be executed
}

Example

In the following example, the code in the loop will run, over and over again, as long as a variable

(i) is less than 10:

while (i < 10) {
 text += "The number is " + i;
 i++;
}

 The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block once,

before checking if the condition is true, then it will repeat the loop as long as the condition is

true.

Syntax

do {
 // code block to be executed
}
while (condition);

Example

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

The example below uses a do/while loop. The loop will always be executed at least once, even

if the condition is false, because the code block is executed before the condition is tested:

Example

do {
 text += "The number is " + i;
 i++;
}
while (i < 10);

JavaScript Break and Continue

The break statement "jumps out" of a loop.

The continue statement "jumps over" one iteration in the loop.

The Break Statement

You have already seen the break statement used in an earlier chapter of this tutorial. It was used

to "jump out" of a switch() statement.

The break statement can also be used to jump out of a loop.

The break statement breaks the loop and continues executing the code after the loop (if any):

Example

for (i = 0; i < 10; i++) {
 if (i === 3) { break; }
 text += "The number is " + i + "
";
}

The Continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

This example skips the value of 3:

Example

for (i = 0; i < 10; i++) {
 if (i === 3) { continue; }
 text += "The number is " + i + "
";
}

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

JavaScript Arrays

JavaScript arrays are used to store multiple values in a single variable.

Example

var cars = ["Saab", "Volvo", "BMW"];

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables

could look like this:

var car1 = "Saab";
var car2 = "Volvo";
var car3 = "BMW";

However, what if you want to loop through the cars and find a specific one? And what if you had

not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring

to an index number.

Creating an Array

Using an array literal is the easiest way to create a JavaScript Array.

Syntax:

var array_name = [item1, item2, ...];

Example

var cars = ["Saab", "Volvo", "BMW"];

Spaces and line breaks are not important. A declaration can span multiple lines:

Example

var cars = [
 "Saab",
 "Volvo",

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

 "BMW"
];

Access the Elements of an Array

You access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

var name = cars[0];

Example

var cars = ["Saab", "Volvo", "BMW"];
document.getElementById("demo").innerHTML = cars[0];

Changing an Array Element

This statement changes the value of the first element in cars:

cars[0] = "Opel";

Example

var cars = ["Saab", "Volvo", "BMW"];
cars[0] = "Opel";
document.getElementById("demo").innerHTML = cars[0];

Access the Full Array

With JavaScript, the full array can be accessed by referring to the array name:

Example

var cars = ["Saab", "Volvo", "BMW"];
document.getElementById("demo").innerHTML = cars;

Array Properties and Methods

The real strength of JavaScript arrays are the built-in array properties and methods:

Examples

var x = cars.length; // The length property returns the number of
elements
var y = cars.sort(); // The sort() method sorts arrays

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Accessing the First Array Element

Example

fruits = ["Banana", "Orange", "Apple", "Mango"];
var first = fruits[0];

Accessing the Last Array Element

Example

fruits = ["Banana", "Orange", "Apple", "Mango"];
var last = fruits[fruits.length - 1];

Adding Array Elements

The easiest way to add a new element to an array is using the push() method:

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.push("Lemon"); // adds a new element (Lemon) to fruits

New element can also be added to an array using the length property:

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits[fruits.length] = "Lemon"; // adds a new element (Lemon) to
fruits

JavaScript Array Methods

Converting Arrays to Strings

The JavaScript method toString() converts an array to a string of (comma separated) array

values.

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
document.getElementById("demo").innerHTML = fruits.toString();

Result:

Banana,Orange,Apple,Mango

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

The join() method also joins all array elements into a string.

It behaves just like toString(), but in addition you can specify the separator:

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
document.getElementById("demo").innerHTML = fruits.join(" * ");

Result:

Banana * Orange * Apple * Mango

Popping and Pushing

When you work with arrays, it is easy to remove elements and add new elements.

This is what popping and pushing is:

Popping items out of an array, or pushing items into an array.

Popping

The pop() method removes the last element from an array:

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.pop(); // Removes the last element ("Mango") from
fruits

The pop() method returns the value that was "popped out":

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
var x = fruits.pop(); // the value of x is "Mango"

Pushing

The push() method adds a new element to an array (at the end):

Example

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.push("Kiwi"); // Adds a new element ("Kiwi") to fruits

The push() method returns the new array length:

Example

var fruits = ["Banana", "Orange", "Apple", "Mango"];
var x = fruits.push("Kiwi"); // the value of x is 5

JavaScript Strings

Method Description

 charAt() Returns the character at the specified index (position)

charCodeAt() Returns the Unicode of the character at the specified index

 concat() Joins two or more strings, and returns a new joined strings

 endsWith() Checks whether a string ends with specified string/characters

fromCharCode() Converts Unicode values to characters

 includes() Checks whether a string contains the specified string/characters

 indexOf() Returns the position of the first found occurrence of a specified value

in a string

lastIndexOf() Returns the position of the last found occurrence of a specified value in

a string

https://www.w3schools.com/jsref/jsref_charat.asp
https://www.w3schools.com/jsref/jsref_charcodeat.asp
https://www.w3schools.com/jsref/jsref_concat_string.asp
https://www.w3schools.com/jsref/jsref_endswith.asp
https://www.w3schools.com/jsref/jsref_fromcharcode.asp
https://www.w3schools.com/jsref/jsref_includes.asp
https://www.w3schools.com/jsref/jsref_indexof.asp
https://www.w3schools.com/jsref/jsref_lastindexof.asp

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

localeCompare() Compares two strings in the current locale

 match() Searches a string for a match against a regular expression, and returns

the matches

 repeat() Returns a new string with a specified number of copies of an existing

string

 replace() Searches a string for a specified value, or a regular expression, and

returns a new string where the specified values are replaced

 search() Searches a string for a specified value, or regular expression, and

returns the position of the match

 slice() Extracts a part of a string and returns a new string

split() Splits a string into an array of substrings

startsWith() Checks whether a string begins with specified characters

 substr() Extracts the characters from a string, beginning at a specified start

position, and through the specified number of character

 substring() Extracts the characters from a string, between two specified indices

toLocaleLowerCase()

Converts a string to lowercase letters, according to the host's locale

toLocaleUpperCase()

Converts a string to uppercase letters, according to the host's locale

https://www.w3schools.com/jsref/jsref_localecompare.asp
https://www.w3schools.com/jsref/jsref_match.asp
https://www.w3schools.com/jsref/jsref_repeat.asp
https://www.w3schools.com/jsref/jsref_replace.asp
https://www.w3schools.com/jsref/jsref_search.asp
https://www.w3schools.com/jsref/jsref_slice_string.asp
https://www.w3schools.com/jsref/jsref_split.asp
https://www.w3schools.com/jsref/jsref_startswith.asp
https://www.w3schools.com/jsref/jsref_substr.asp
https://www.w3schools.com/jsref/jsref_substring.asp
https://www.w3schools.com/jsref/jsref_tolocalelowercase.asp
https://www.w3schools.com/jsref/jsref_tolocaleuppercase.asp
https://www.w3schools.com/jsref/jsref_tolocaleuppercase.asp

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

String Properties

Property Description

constructor

Returns the string's constructor function

 toLowerCase() Converts a string to lowercase letters

 toString() Returns the value of a String object

 toUpperCase() Converts a string to uppercase letters

 trim() Removes whitespace from both ends of a string

 valueOf() Returns the primitive value of a String object

https://www.w3schools.com/jsref/jsref_constructor_string.asp
https://www.w3schools.com/jsref/jsref_tolowercase.asp
https://www.w3schools.com/jsref/jsref_tostring_string.asp
https://www.w3schools.com/jsref/jsref_touppercase.asp
https://www.w3schools.com/jsref/jsref_trim_string.asp
https://www.w3schools.com/jsref/jsref_valueof_string.asp

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

length

Returns the length of a string

prototype

Allows you to add properties and methods to an object

String Methods

All string methods return a new value. They do not change the original variable.

String Length

The length property returns the length of a string:

Example

var txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
var sln = txt.length;

Finding a String in a String

The indexOf() method returns the index of (the position of) the first occurrence of a specified

text in a string:

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.indexOf("locate");

JavaScript counts positions from zero.

0 is the first position in a string, 1 is the second, 2 is the third ...

The lastIndexOf() method returns the index of the last occurrence of a specified text in a string:

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.lastIndexOf("locate");

Both indexOf(), and lastIndexOf() return -1 if the text is not found.

https://www.w3schools.com/jsref/jsref_length_string.asp
https://www.w3schools.com/jsref/jsref_prototype_string.asp

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.lastIndexOf("John");

Both methods accept a second parameter as the starting position for the search:

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.indexOf("locate", 15);

The lastIndexOf() methods searches backwards, meaning: if the second parameter is 15, the

search starts at position 15, counting from the end, and searches to the beginning of the string.

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.lastIndexOf("locate", 15);

Searching for a String in a String

The search() method searches a string for a specified value and returns the position of the match:

Example

var str = "Please locate where 'locate' occurs!";
var pos = str.search("locate");

Extracting String Parts

There are 3 methods for extracting a part of a string:

slice(start, end)

substring(start, end)

substr(start, length)

The slice() Method

slice() extracts a part of a string and returns the extracted part in a new string.

The method takes 2 parameters: the start position, and the end position (end not included).

This example slices out a portion of a string from position 7 to position 12 (13-1):

Example

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

var str = "Apple, Banana, Kiwi";
var res = str.slice(7, 13);

The result of res will be:

Banana

The substring() Method

substring() is similar to slice().

The difference is that substring() cannot accept negative indexes.

Example

var str = "Apple, Banana, Kiwi";
var res = str.substring(7, 13);

The result of res will be:

Banana

The substr() Method

substr() is similar to slice().

The difference is that the second parameter specifies the length of the extracted part.

Example

var str = "Apple, Banana, Kiwi";
var res = str.substr(7, 6);

The result of res will be:

Banana

Replacing String Content

The replace() method replaces a specified value with another value in a string:

Example

str = "Please visit Microsoft!";
var n = str.replace("Microsoft", "W3Schools");

Converting to Upper and Lower Case

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

A string is converted to upper case with toUpperCase():

Example

var text1 = "Hello World!"; // String
var text2 = text1.toUpperCase(); // text2 is text1 converted to upper

The concat() Method

concat() joins two or more strings:

Example

var text1 = "Hello";
var text2 = "World";
var text3 = text1.concat(" ", text2);

String.trim()

The trim() method removes whitespace from both sides of a string:

Example

var str = " Hello World! ";
alert(str.trim());

Extracting String Characters

There are 3 methods for extracting string characters:

charAt(position)

charCodeAt(position)

Property access []

The charAt() Method

The charAt() method returns the character at a specified index (position) in a string:

Example

var str = "HELLO WORLD";
str.charAt(0); // returns H

The charCodeAt() Method

The charCodeAt() method returns the unicode of the character at a specified index in a string:

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

The method returns a UTF-16 code (an integer between 0 and 65535).

Example

var str = "HELLO WORLD";
str.charCodeAt(0); // returns 72

Property Access

ECMAScript 5 (2009) allows property access [] on strings:

Example

var str = "HELLO WORLD";
str[0]; // returns H

Converting a String to an Array

A string can be converted to an array with the split() method:

Example

var txt = "a,b,c,d,e"; // String
txt.split(","); // Split on commas
txt.split(" "); // Split on spaces
txt.split("|"); // Split on pip

What is the DOM?

The DOM is a W3C (World Wide Web Consortium) standard.

The DOM defines a standard for accessing documents:

"The W3C Document Object Model (DOM) is a platform and language-neutral interface that

allows programs and scripts to dynamically access and update the content, structure, and style of

a document."

The W3C DOM standard is separated into 3 different parts:

Core DOM - standard model for all document types

XML DOM - standard model for XML documents

HTML DOM - standard model for HTML documents

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

What is DOM in JavaScript?

JavaScript can access all the elements in a webpage making use of Document Object Model

(DOM). In fact, the web browser creates a DOM of the webpage when the page is loaded. The

DOM model is created as a tree of objects like this:

How to use DOM and Events

Using DOM, JavaScript can perform multiple tasks. It can create new elements and attributes,

change the existing elements and attributes and even remove existing elements and attributes.

JavaScript can also react to existing events and create new events in the page.

getElementById, innerHTML Example

 getElementById: To access elements and attributes whose id is set.

 innerHTML: To access the content of an element.

Try this Example yourself:

Top of Form

<html>

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

<head>
 <title>DOM!!!</title>
</head>
<body>
 <h1 id="one">Welcome</h1>
 <p>This is the welcome message.</p>
 <h2>Technology</h2>
 <p>This is the technology section.</p>
 <script type="text/javascript">
 var text = document.getElementById("one").innerHTML;
 alert("The first heading is " + text);
 </script>
</body>
</html>

getElementsByTagName Example

getElementsByTagName: To access elements and attributes using tag name. This method will

return an array of all the items with the same tag name.

Try this Example yourself:

<html>
<head>
 <title>DOM!!!</title>
</head>
<body>
 <h1>Welcome</h1>
 <p>This is the welcome message.</p>
 <h2>Technology</h2>
 <p id="second">This is the technology section.</p>
 <script type="text/javascript">
 var paragraphs = document.getElementsByTagName("p");
 alert("Content in the second paragraph is " +
paragraphs[1].innerHTML);
 document.getElementById("second").innerHTML = "The orginal message
is changed.";
 </script>
</body>
</html>

Event handler Example

createElement: To create new element

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

removeChild: Remove an element

You can add an event handler to a particular element like this:

 document.getElementById(id).onclick=function()
 {
 lines of code to be executed
 }
OR

document.getElementById(id).addEventListener("click", functionname)

Try this Example yourself:

<html>
<head>
 <title>DOM!!!</title>
</head>
<body>
 <input type="button" id="btnClick" value="Click Me!!" />
 <script type="text/javascript">
 document.getElementById("btnClick").addEventListener("click",
clicked);
 function clicked()
 {
 alert("You clicked me!!!");
 }
 </script>
</body>
</html>

JavaScript Closures

JavaScript variables can belong to the local or global scope.

Global variables can be made local (private) with closures.

Global Variables

A function can access all variables defined inside the function, like this:

Example

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

function myFunction() {
 var a = 4;
 return a * a;
}

But a function can also access variables defined outside the function, like this:

Example

var a = 4;
function myFunction() {
 return a * a;
}

In the last example, a is a global variable.

In a web page, global variables belong to the window object.

Global variables can be used (and changed) by all scripts in the page (and in the window).

In the first example, a is a local variable.

A local variable can only be used inside the function where it is defined. It is hidden from other

functions and other scripting code.

Global and local variables with the same name are different variables. Modifying one, does not

modify the other.

Variables created without the keyword var, are always global, even if they are created inside a

function.

Variable Lifetime

Global variables live as long as your application (your window / your web page) lives.

Local variables have short lives. They are created when the function is invoked, and deleted

when the function is finished.

JavaScript Closures

Remember self-invoking functions? What does this function do?

Example

var add = (function () {
 var counter = 0;
 return function () {counter += 1; return counter}

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

})();

add();
add();
add();

// the counter is now 3

Example Explained

The variable add is assigned the return value of a self-invoking function.

The self-invoking function only runs once. It sets the counter to zero (0), and returns a function

expression.

This way add becomes a function. The "wonderful" part is that it can access the counter in the

parent scope.

This is called a JavaScript closure. It makes it possible for a function to have "private"

variables.

The counter is protected by the scope of the anonymous function, and can only be changed using

the add function.

A closure is a function having access to the parent scope, even after the parent function has

closed.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

AJAX:

AJAX stands for Asynchronous JavaScript and XML.

 Through AJAX you can:

 Update a web page without reloading the page

 Request data from a server - after the page has loaded

 Receive data from a server - after the page has loaded

 Send data to a server - in the background

 Create better, faster, and more interactive web applications with the help of XML,

HTML, CSS, and Java Script.

AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for creating

better, faster, and more interactive web applications with the help of XML, HTML, CSS, and

Java Script.

 Ajax uses XHTML for content, CSS for presentation, along with Document Object

Model and JavaScript for dynamic content display.

 Conventional web applications transmit information to and from the sever using

synchronous requests. It means you fill out a form, hit submit, and get directed to a new

page with new information from the server.

 With AJAX, when you hit submit, JavaScript will make a request to the server, interpret

the results, and update the current screen. In the purest sense, the user would never know

that anything was even transmitted to the server.

 XML is commonly used as the format for receiving server data, although any format,

including plain text, can be used.

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests information

from the server in the background.

 Intuitive and natural user interaction. Clicking is not required, mouse movement is a

sufficient event trigger.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

 Data-driven as opposed to page-driven.

Ex:Google Maps, Google Suggest ,Gmail, Yahoo Maps (new)

Rich Internet Application Technology:

AJAX is the most viable Rich Internet Application (RIA) technology so far. It is getting

tremendous industry momentum and several tool kit and frameworks are emerging. But at the

same time, AJAX has browser incompatibility and it is supported by JavaScript, which is hard to

maintain and debug.

AJAX is Based on Open Standards:

AJAX is based on the following open standards –

Browser-based presentation using HTML and Cascading Style Sheets (CSS).

Data is stored in XML format and fetched from the server.

Behind-the-scenes data fetches using XMLHttpRequest objects in the browser.

JavaScript to make everything happen.

There are too many web applications running on the web that are using ajax technology

like gmail, facebook,twitter, google map, youtube etc.

Asynchronous (AJAX Web-Application Model):

An asynchronous request doesn’t block the client i.e. browser is responsive. At that time, user

can perform another operations also. In such case, javascript engine of the browser is not

blocked.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

As you can see in the above image, full page is not refreshed at request time and user gets response from the ajax

engine.

Let's try to understand asynchronous communication by the image given below.

Ajax Communication Techniques:

AJAX Technologies:
As describe earlier, ajax is not a technology but group of inter-related

technologies. AJAX technologies includes:

HTML/XHTML and CSS

DOM

XML or JSON

https://www.javatpoint.com/ajax-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/xhtml-tutorial
https://www.javatpoint.com/css-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/json-tutorial

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

XMLHttpRequest

JavaScript

HTML/XHTML and CSS:
These technologies are used for displaying content and style. It is mainly used for presentation.

DOM:
It is used for dynamic display and interaction with data.

XML or JSON:
For carrying data to and from server. JSON (Javascript Object Notation) is like XML but short

and faster than XML.

XMLHttpRequest:
For asynchronous communication between client and server. For more visit next page.

JavaScript:
It is used to bring above technologies together.

Independently, it is used mainly for client-side validation.

The XMLHttpRequest Object:
The XMLHttpRequest object can be used to exchange data with a web server behind the scenes.

This means that it is possible to update parts of a web page, without reloading the whole page.

Create an XMLHttpRequest Object:
All modern browsers (Chrome, Firefox, IE7+, Edge, Safari, Opera) have a built-

in XMLHttpRequest object.

Syntax for creating an XMLHttpRequest object:

variable = new XMLHttpRequest();

https://www.javatpoint.com/understanding-xmlhttprequest
https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/understanding-synchronous-vs-asynchronous

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Example

var xhttp = new XMLHttpRequest();

The XMLHttpRequest object is the key to AJAX. It has been available ever since Internet

Explorer 5.5 was released in July 2000, but was not fully discovered until AJAX and Web 2.0 in

2005 became popular.

XMLHttpRequest (XHR) is an API that can be used by JavaScript, JScript, VBScript, and other

web browser scripting languages to transfer and manipulate XML data to and from a webserver

using HTTP, establishing an independent connection channel between a webpage's Client-Side

and Server-Side.

The data returned from XMLHttpRequest calls will often be provided by back-end databases.

Besides XML, XMLHttpRequest can be used to fetch data in other formats, e.g. JSON or even

plain text.

You already have seen a couple of examples on how to create an XMLHttpRequest object.

Listed below are some of the methods and properties that you have to get familiar with.

XMLHttpRequest Methods:
abort()

Cancels the current request.

getAllResponseHeaders()

Returns the complete set of HTTP headers as a string.

getResponseHeader(headerName)

Returns the value of the specified HTTP header.

open(method, URL)

open(method, URL, async)

open(method, URL, async, userName)

open(method, URL, async, userName, password)

Specifies the method, URL, and other optional attributes of a request.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

The method parameter can have a value of "GET", "POST", or "HEAD". Other HTTP methods

such as "PUT" and "DELETE" (primarily used in REST applications) may be possible.

The "async" parameter specifies whether the request should be handled asynchronously or not.

"true" means that the script processing carries on after the send() method without waiting for a

response, and "false" means that the script waits for a response before continuing script

processing.

send(content)

Sends the request.

setRequestHeader(label, value)

Adds a label/value pair to the HTTP header to be sent.

XMLHttpRequest Properties:
onreadystatechange

An event handler for an event that fires at every state change.

readyState

The readyState property defines the current state of the XMLHttpRequest object.

The following table provides a list of the possible values for the readyState property −

State Description

0 The request is not initialized.

1 The request has been set up.

2 The request has been sent.

3 The request is in process.

4 The request is completed.

readyState = 0 After you have created the XMLHttpRequest object, but before you have called

the open() method.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

readyState = 1 After you have called the open() method, but before you have called send().

readyState = 2 After you have called send().

readyState = 3 After the browser has established a communication with the server, but before

the server has completed the response.

readyState = 4 After the request has been completed, and the response data has been completely

received from the server.

responseText

Returns the response as a string.

responseXML

Returns the response as XML. This property returns an XML document object, which can be examined and

parsed using the W3C DOM node tree methods and properties.

status

Returns the status as a number (e.g., 404 for "Not Found" and 200 for "OK").

statusText

Returns the status as a string (e.g., "Not Found" or "OK").

How AJAX works?:
AJAX communicates with the server using XMLHttpRequest object. Let's try to understand the

flow of ajax or how ajax works by the image displayed below.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

As you can see in the above example, XMLHttpRequest object plays a important role.

User sends a request from the UI and a javascript call goes to XMLHttpRequest object.

HTTP Request is sent to the server by XMLHttpRequest object.

Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

Data is retrieved.

Server sends XML data or JSON data to the XMLHttpRequest callback function.

HTML and CSS data is displayed on the browser.

AJAX data formats:
Upon sending an XMLHttpRequest request to the server, we will have a response. This response

could be in two different formats: plain text or in XML.

- Plain text: we could receive just a text, a word, a sentence (JSON is actually a sentence)

- XML: the response we received will be XML encoded, so our JavaScript may need to perform

some transformation to display it.

XML:
The eXtensible Markup Language was created to provide some structure to the information

exchanged between multiple systems. It provides a way to store this information and to transport

it.

Basically with XML you could create your own language to store your information, for instance:

?

1

2

3

4

5

6

<record>

 <from>John Doe</from>

 <to>Everyone</to>

 <title>First XML Record</title>

 <description>This is the first of many XML records</description>

</record>

To access an XML response, the XMLHttpRequest object has a property called: responseXML.

Once you have the response in a JS variable, you can access the different nodes of the XML with

standard DOM functions: i.e: getElementsByTagName.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

String:
As mentioned before, an XMLHttpRequest could receive plain text as a response: a word, a

letter, a complete sence, and text with special encoding. To access this response you have to use

a property called: responseText.

JSON:
JSON stands for JavaScript Object Notation which is a data interchange format. It is now widely

adopted as a way to handle responses from server, since it is a simple encoding that allows

human and machines to read it easily.

In our tutorial, as I briefly mentioned before, a JSON response is actually a text response, so you

should use the responseText property to access it. Once you have it available, you could use

multiple JSON libraries to parse it, and perform any operation needed based on the information

received.

AJAX SECURITY CONCERNS:
The Ajax calls are sent in plain text format, this might lead to insecure database access. The data

gets stored on the clients browser, thus making the data available to anyone. It also allows

monitoring browsing sessions by inserting scripts.

AJAX function calls are sent in plain text to server. These calls may easily reveal database

details, variable names etc

User’s browsing session can be monitored my maliciously inserting scripts

Ajax may encourage developers to use multiple server side pages thereby introducing multiple

entry points for attackers

- A JavaScript can not access the local file system without the user's permission.

- An AJAX interaction can only be made with the servers-side component from which the page

was loaded.

- A proxy pattern could be used for AJAX interactions with external services.

- The application model should not be exposed as some user might be able to reverse engineer

the application.

- HTTPS can be used to secure the connection when confidential information is being exchanged

http://www.wideskills.com/ajax-tutorial
http://www.wideskills.com/ajax-tutorial
http://www.wideskills.com/ajax-tutorial

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

AJAX Security: Server Side:
AJAX-based Web applications use the same server-side security schemes of regular Web

applications.

You specify authentication, authorization, and data protection requirements in your web.xml file

(declarative) or in your program (programmatic).

AJAX-based Web applications are subject to the same security threats as regular Web

applications.

AJAX Security: Client Side:
JavaScript code is visible to a user/hacker. Hacker can use JavaScript code for inferring server-

side weaknesses.

JavaScript code is downloaded from the server and executed ("eval") at the client and can

compromise the client by mal-intended code.

Downloaded JavaScript code is constrained by the sand-box security model and can be relaxed

for signed JavaScript.

USER INTERFACE DESIGN FOR AJAX:
The user interface for ajax is designed using html,xml,javascript,css

File directory:
ajax_example.html

surprise.html

css (folder) containing styles.css file

you'll have a main HTML file, CSS stylesheet, JavaScript file, and an additional HTML file.

We're going to grab the contents of the second HTML file and insert it into the first page.

Here's the main HTML page.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

<!DOCTYPE html>

<html> <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="css/styles.css">

 <title>AJAX practice</title>

 <script>

 </script>

 </head>

 <body>

 <h1>Today's your special day!</h1>

 <button id="reveal">Why's that?</button>

 <div id="ajax-content">

 </div>

 </body>

</html>Here's the content you'll put in surprise.html (if on your computer)

<h1 id="birthday-greeting">It's your birthday!</h1>

surprise.html is the file we'll load from within ajax_example.html - via AJAX!

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

Main HTML page

Introduction to XMLHttpRequest:
XMLHttpRequest is a mouthful. It's a system that lets data be transferred between a client and a

server. As you learned, this normally happens via request and response. The same is true with

XMLHttpRequest, except you can grab data from a URL without the page refreshing!

Think to a time you've used Facebook or Gmail. You've performed actions without reloading an

entire page. You've left comments that post instantly while you're on the same page, for example.

That's what AJAX allows!

Your first AJAX call:
1. First, you'll create an XMLHttpRequest object.

2. Open your request with the open method.

3. Send the request with the send method.

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

You need to create an XMLHttpRequest object for every AJAX request you make. Let's see how

this looks in a code example.

// 1. create a new XMLHttpRequest object -- an object like any other!

var myRequest = new XMLHttpRequest();

// 2. open the request and pass the HTTP method name and the resource as parameters

myRequest.open('GET', 'surprise.html');

// 3. write a function that runs anytime the state of the AJAX request changes

myRequest.onreadystatechange = function () {

 // 4. check if the request has a readyState of 4, which indicates the server has responded

(complete)

 if (myRequest.readyState === 4) {

 // 5. insert the text sent by the server into the HTML of the 'ajax-content'

 document.getElementById('ajax-content').innerHTML = myRequest.responseText;

 }

}

readyState can have a value between 0 and 4. You'll probably never use anything besides

areadyState of 4, which indicates the server has sent back its full response.

Now, we need a function to call within the page when the button is clicked. Since a button click

will send the AJAX, why not name it sendTheAJAX?

PREPARED BY SANDEEP R ,ASST.PROF

WEB PROGRAMMING MCET,CSE

function sendTheAJAX() {

 myRequest.send();

 document.getElementById('reveal').style.display = 'none';

}

This function also hides the original button, leaving only the newly revealed text via

setting display to'none'. Now, add this new function back to your HTML in this line

<button id="reveal" onclick="sendTheAJAX()" class="button">Why's that?</button>

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Python Introduction:
Python is a general purpose, dynamic, high level and interpreted programming language. It

supports Object Oriented programming approach to develop applications. It is simple and easy to

learn and provides lots of high-level data structures.

Python is easy to learn yet powerful and versatile scripting language which makes it attractive

for Application Development.

Python's syntax and dynamic typing with its interpreted nature, makes it an ideal language for

scripting and rapid application development.

Python supports multiple programming pattern, including object oriented, imperative and

functional or procedural programming styles.

Python is not intended to work on special area such as web programming. That is why it is

known as multipurpose because it can be used with web, enterprise, 3D CAD etc.

We don't need to use data types to declare variable because it is dynamically typed so we can

write a=10 to assign an integer value in an integer variable.

Python makes the development and debugging fast because there is no compilation step included

in python development and edit-test-debug cycle is very fast.

Python Features:
Python provides lots of features that are listed below.

1) Easy to Learn and Use

Python is easy to learn and use. It is developer-friendly and high level programming language.

2) Expressive Language

Python language is more expressive means that it is more understandable and readable.

3) Interpreted Language

Python is an interpreted language i.e. interpreter executes the code line by line at a time. This

makes debugging easy and thus suitable for beginners.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

4) Cross-platform Language

Python can run equally on different platforms such as Windows, Linux, Unix and Macintosh etc.

So, we can say that Python is a portable language.

5) Free and Open Source

Python language is freely available at offical web address.The source-code is also available.

Therefore it is open source.

6) Object-Oriented Language

Python supports object oriented language and concepts of classes and objects come into

existence.

7) Extensible

It implies that other languages such as C/C++ can be used to compile the code and thus it can be

used further in our python code.

8) Large Standard Library

Python has a large and broad library and prvides rich set of module and functions for rapid

application development.

9) GUI Programming Support

Graphical user interfaces can be developed using Python.

10) Integrated

It can be easily integrated with languages like C, C++, JAVA etc.

https://www.python.org/

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Python Applications:
Python is known for its general purpose nature that makes it applicable in almost each domain of

software development. Python as a whole can be used in any sphere of development.

Here, we are specifing applications areas where python can be applied.

1) Web Applications:

We can use Python to develop web applications. It provides libraries to handle internet protocols

such as HTML and XML, JSON, Email processing, request, beautifulSoup, Feedparser etc. It

also provides Frameworks such as Django, Pyramid, Flask etc to design and delelop web based

applications. Some important developments are: PythonWikiEngines, Pocoo,

PythonBlogSoftware etc.

2) Desktop GUI Applications:

Python provides Tk GUI library to develop user interface in python based application. Some

other useful toolkits wxWidgets, Kivy, pyqt that are useable on several platforms. The Kivy is

popular for writing multitouch applications.

3) Software Development:

Python is helpful for software development process. It works as a support language and can be

used for build control and management, testing etc.

4) Scientific and Numeric:

Python is popular and widely used in scientific and numeric computing. Some useful library and

package are SciPy, Pandas, IPython etc. SciPy is group of packages of engineering, science and

mathematics.

5) Business Applications:

Python is used to build Bussiness applications like ERP and e-commerce systems. Tryton is a

high level application platform.

6) Console Based Application:

We can use Python to develop console based applications. For example: IPython.

7) Audio or Video based Applications:

Python is awesome to perform multiple tasks and can be used to develop multimedia

applications. Some of real applications are: TimPlayer, cplay etc.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

8) 3D CAD Applications:

To create CAD application Fandango is a real application which provides full features of CAD.

9) Enterprise Applications:

Python can be used to create applications which can be used within an Enterprise or an

Organization. Some real time applications are: OpenErp, Tryton, Picalo etc.

10) Applications for Images:

Using Python several application can be developed for image. Applications developed are:

VPython, Gogh, imgSeek etc.

There are several such applications which can be developed using Python

Python Data Types:
Variables can hold values of different data types. Python is a dynamically typed language hence

we need not define the type of the variable while declaring it. The interpreter implicitly binds the

value with its type.

Python enables us to check the type of the variable used in the program. Python provides us

the type() function which returns the type of the variable passed.

Consider the following example to define the values of different data types and checking its type.

 A=10

b="Hi Python"

c = 10.5

print(type(a));

print(type(b));

print(type(c));

Output:

<type 'int'>

<type 'str'>

<type 'float'>

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Standard data types:

A variable can hold different types of values. For example, a person?s name must be stored as a

string whereas its id must be stored as an integer.

Python provides various standard data types that define the storage method on each of them. The

data types defined in Python are given below.

 Numbers

 String

 List

 Tuple

 Dictionary

In this section of the tutorial, we will give a brief introduction of the above data types. We will discuss each one of

them in detail later in this tutorial.

Numbers:
Number stores numeric values. Python creates Number objects when a number is assigned to a

variable. For example;

1. a = 3 , b = 5 #a and b are number objects

Python supports 4 types of numeric data.

1. int (signed integers like 10, 2, 29, etc.)

2. long (long integers used for a higher range of values like 908090800L, -0x1929292L, etc.)

3. float (float is used to store floating point numbers like 1.9, 9.902, 15.2, etc.)

4. complex (complex numbers like 2.14j, 2.0 + 2.3j, etc.)

Python allows us to use a lower-case L to be used with long integers. However, we must always

use an upper-case L to avoid confusion.

A complex number contains an ordered pair, i.e., x + iy where x and y denote the real and

imaginary parts respectively).

String:

https://www.javatpoint.com/python-data-types#numbers
https://www.javatpoint.com/python-data-types#string
https://www.javatpoint.com/python-data-types#list
https://www.javatpoint.com/python-data-types#tuple
https://www.javatpoint.com/python-data-types#dictionary

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

The string can be defined as the sequence of characters represented in the quotation marks. In

python, we can use single, double, or triple quotes to define a string.

String handling in python is a straightforward task since there are various inbuilt functions and

operators provided.

In the case of string handling, the operator + is used to concatenate two strings as the

operation "hello"+" python" returns "hello python".

The operator * is known as repetition operator as the operation "Python " *2 returns "Python

Python ".

1. str1 = 'hello javatpoint' #string str1

2. str2 = ' how are you' #string str2

3. print (str1[0:2]) #printing first two character using slice operator

4. print (str1[4]) #printing 4th character of the string

5. print (str1*2) #printing the string twice

6. print (str1 + str2) #printing the concatenation of str1 and str2

Output:

he

hello javatpointhello javatpoint

hello javatpoint how are you

List
Lists are similar to arrays in C. However; the list can contain data of different types. The items

stored in the list are separated with a comma (,) and enclosed within square brackets [].

We can use slice [:] operators to access the data of the list. The concatenation operator (+) and

repetition operator (*) works with the list in the same way as they were working with the strings.

Consider the following example.

1. l = [1, "hi", "python", 2]

2. print (l[3:]);

3. print (l[0:2]);

4. print (l);

5. print (l + l);

6. print (l * 3);

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Output:

[2]

[1, 'hi']

[1, 'hi', 'python', 2]

[1, 'hi', 'python', 2, 1, 'hi', 'python', 2]

[1, 'hi', 'python', 2, 1, 'hi', 'python', 2, 1, 'hi', 'python', 2]

Tuple:
A tuple is similar to the list in many ways. Like lists, tuples also contain the collection of the

items of different data types. The items of the tuple are separated with a comma (,) and enclosed

in parentheses ().

A tuple is a read-only data structure as we can't modify the size and value of the items of a tuple.

Let's see a simple example of the tuple.

1. t = ("hi", "python", 2)

2. print (t[1:]);

3. print (t[0:1]);

4. print (t);

5. print (t + t);

6. print (t * 3);

7. print (type(t))

8. t[2] = "hi";

Output:

('python', 2)

('hi',)

('hi', 'python', 2)

('hi', 'python', 2, 'hi', 'python', 2)

('hi', 'python', 2, 'hi', 'python', 2, 'hi', 'python', 2)

<type 'tuple'>

Traceback (most recent call last):

 File "main.py", line 8, in <module>

 t[2] = "hi";

TypeError: 'tuple' object does not support item assignment

Dictionary:

Dictionary is an ordered set of a key-value pair of items. It is like an associative array or a hash table where each key

stores a specific value. Key can hold any primitive data type whereas value is an arbitrary Python object.

The items in the dictionary are separated with the comma and enclosed in the curly braces {}.

Consider the following example.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

1. d = {1:'Jimmy', 2:'Alex', 3:'john', 4:'mike'};

2. print("1st name is "+d[1]);

3. print("2nd name is "+ d[4]);

4. print (d);

5. print (d.keys());

6. print (d.values());

Output:

1st name is Jimmy

2nd name is mike

{1: 'Jimmy', 2: 'Alex', 3: 'john', 4: 'mike'}

[1, 2, 3, 4]

['Jimmy', 'Alex', 'john', 'mike']

Till now, we were taking the input from the console and writing it back to the console to interact

with the user.

Sometimes, it is not enough to only display the data on the console. The data to be displayed may be very large, and

only a limited amount of data can be displayed on the console, and since the memory is volatile, it is impossible to

recover the programmatically generated data again and again.

However, if we need to do so, we may store it onto the local file system which is volatile and can be accessed every

time. Here, comes the need of file handling.

In this section of the tutorial, we will learn all about file handling in python including, creating a file, opening a file,

closing a file, writing and appending the file, etc.

Opening a file:
Python provides the open() function which accepts two arguments, file name and access mode in

which the file is accessed. The function returns a file object which can be used to perform

various operations like reading, writing, etc.

The syntax to use the open() function is given below.

file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the

details about the access mode to open a file.

SN Access

mode

Description

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

1 R It opens the file to read-only. The file pointer exists at the beginning. The file is by default open in this mode if no access mode

is passed.

2 Rb It opens the file to read only in binary format. The file pointer exists at the beginning of the file.

3 r+ It opens the file to read and write both. The file pointer exists at the beginning of the file.

4 rb+ It opens the file to read and write both in binary format. The file pointer exists at the beginning of the file.

5 w It opens the file to write only. It overwrites the file if previously exists or creates a new one if no file exists with the same name.

The file pointer exists at the beginning of the file.

6 wb It opens the file to write only in binary format. It overwrites the file if it exists previously or creates a new one if no file exists

with the same name. The file pointer exists at the beginning of the file.

7 w+ It opens the file to write and read both. It is different from r+ in the sense that it overwrites the previous file if one exists whereas

r+ doesn?t overwrite the previously written file. It creates a new file if no file exists. The file pointer exists at the beginning of

the file.

8 wb+ It opens the file to write and read both in binary format. The file pointer exists at the beginning of the file.

9 a It opens the file in the append mode. The file pointer exists at the end of the previously written file if exists any. It creates a new

file if no file exists with the same name.

10 ab It opens the file in the append mode in binary format. The pointer exists at the end of the previously written file. It creates a new

file in binary format if no file exists with the same name.

11 a+ It opens a file to append and read both. The file pointer remains at the end of the file if a file exists. It creates a new file if no file

exists with the same name.

12 ab+ It opens a file to append and read both in binary format. The file pointer remains at the end of the file.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Let's look at the simple example to open a file named "file.txt" (stored in the same directory) in

read mode and printing its content on the console.

Example:

1. #opens the file file.txt in read mode

2. fileptr = open("file.txt","r")

3.

4. if fileptr:

5. print("file is opened successfully")

Output:

<class '_io.TextIOWrapper'>

file is opened successfully

The close() method:
Once all the operations are done on the file, we must close it through our python script using the

close() method. Any unwritten information gets destroyed once the close() method is called on a

file object.

We can perform any operation on the file externally in the file system is the file is opened in

python, hence it is good practice to close the file once all the operations are done.

The syntax to use the close() method is given below.

fileobject.close()

Consider the following example.

Example

1. # opens the file file.txt in read mode

2. fileptr = open("file.txt","r")

3.

4. if fileptr:

5. print("file is opened successfully")

6.

7. #closes the opened file

8. fileptr.close()

Reading the file:
To read a file using the python script, the python provides us the read() method. The read()

method reads a string from the file. It can read the data in the text as well as binary format.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

The syntax of the read() method is given below.

fileobj.read(<count>)
Here, the count is the number of bytes to be read from the file starting from the beginning of the

file. If the count is not specified, then it may read the content of the file until the end.

Consider the following example.

Example:

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file.txt","r");

3.

4. #stores all the data of the file into the variable content

5. content = fileptr.read(9);

6.

7. # prints the type of the data stored in the file

8. print(type(content))

9. #prints the content of the file

10. print(content)

 #closes the opened file

11. fileptr.close()

Output:

<class 'str'>

Hi, I am

Read Lines of the file:
Python facilitates us to read the file line by line by using a function readline(). The readline()

method reads the lines of the file from the beginning, i.e., if we use the readline() method two

times, then we can get the first two lines of the file.

Consider the following example which contains a function readline() that reads the first line of

our file "file.txt" containing three lines.

Example
1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file.txt","r");

3.

4. #stores all the data of the file into the variable content

5. content = fileptr.readline();

6.

7. # prints the type of the data stored in the file

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

8. print(type(content))

9.

10. #prints the content of the file

11. print(content)

12.

13. #closes the opened file

14. fileptr.close()

Output:

<class 'str'>

Hi, I am the file and being used as

Looping through the file:

By looping through the lines of the file, we can read the whole file.

Example
#open the file.txt in read mode. causes an error if no such file exists.

fileptr = open("file.txt","r");

#running a for loop

for i in fileptr:

 print(i) # i contains each line of the file

Output:

Hi, I am the file and being used as

an example to read a

file in python.

Writing the file:
To write some text to a file, we need to open the file using the open method with one of the

following access modes.

a: It will append the existing file. The file pointer is at the end of the file. It creates a new file if

no file exists.

w: It will overwrite the file if any file exists. The file pointer is at the beginning of the file.

Consider the following example.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Example 1
1. #open the file.txt in append mode. Creates a new file if no such file exists.

2. fileptr = open("file.txt","a");

3.

4. #appending the content to the file

5. fileptr.write("Python is the modern day language. It makes things so simple.")

6.

7.

8. #closing the opened file

9. fileptr.close();

Now, we can see that the content of the file is modified.

File.txt:

1. Hi, I am the file and being used as

2. an example to read a

3. file in python.

4. Python is the modern day language. It makes things so simple.

Example 2
1. #open the file.txt in write mode.

2. fileptr = open("file.txt","w");

3.

4. #overwriting the content of the file

5. fileptr.write("Python is the modern day language. It makes things so simple.")

6.

7.

8. #closing the opened file

9. fileptr.close();

Now, we can check that all the previously written content of the file is overwritten with the new

text we have passed.

File.txt:

1. Python is the modern day language. It makes things so simple.

Creating a new file:
The new file can be created by using one of the following access modes with the function

open(). x: it creates a new file with the specified name. It causes an error a file exists with the

same name.

a: It creates a new file with the specified name if no such file exists. It appends the content to the

file if the file already exists with the specified name.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

w: It creates a new file with the specified name if no such file exists. It overwrites the existing

file.

Consider the following example.

Example
1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","x");

3.

4. print(fileptr)

5.

6. if fileptr:

7. print("File created successfully");

Output:

File created successfully

Using with statement with files:
The with statement was introduced in python 2.5. The with statement is useful in the case of

manipulating the files. The with statement is used in the scenario where a pair of statements is to

be executed with a block of code in between.

The syntax to open a file using with statement is given below.

with open(<file name>, <access mode>) as <file-pointer>:

 #statement suite

The advantage of using with statement is that it provides the guarantee to close the file regardless

of how the nested block exits.

It is always suggestible to use the with statement in the case of file s because, if the break, return,

or exception occurs in the nested block of code then it automatically closes the file. It doesn't let

the file to be corrupted.

Consider the following example.

Example:
1. with open("file.txt",'r') as f:

2. content = f.read();

3. print(content)

Output:

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Python is the modern day language. It makes things so simple.

File Pointer positions:
Python provides the tell() method which is used to print the byte number at which the file pointer

exists. Consider the following example.

Example
1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #reading the content of the file

8. content = fileptr.read();

9.

10. #after the read operation file pointer modifies. tell() returns the location of the fileptr.

11.

12. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at 26

Modifying file pointer position:

In the real world applications, sometimes we need to change the file pointer location externally

since we may need to read or write the content at various locations.

For this purpose, the python provides us the seek() method which enables us to modify the file

pointer position externally.

The syntax to use the seek() method is given below.

<file-ptr>.seek(offset[, from)

The seek() method accepts two parameters:

offset: It refers to the new position of the file pointer within the file.

from: It indicates the reference position from where the bytes are to be moved. If it is set to 0,

the beginning of the file is used as the reference position. If it is set to 1, the current position of

the file pointer is used as the reference position. If it is set to 2, the end of the file pointer is used

as the reference position.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Consider the following example.

Example
1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #changing the file pointer location to 10.

8. fileptr.seek(10);

9.

10. #tell() returns the location of the fileptr.

11. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at 10

Python os module:
The os module provides us the functions that are involved in file processing operations like

renaming, deleting, etc.

Let's look at some of the os module functions.

Renaming the file:
The os module provides us the rename() method which is used to rename the specified file to a

new name. The syntax to use the rename() method is given below.

rename(?current-name?, ?new-name?)

Example
1. import os;

2.

3. #rename file2.txt to file3.txt

4. os.rename("file2.txt","file3.txt")

Removing the file:

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

The os module provides us the remove() method which is used to remove the specified file. The

syntax to use the remove() method is given below.

1. remove(?file-name?)

Example:

import os;

#deleting the file named file3.txt

os.remove("file3.txt")

Creating the new directory:
The mkdir() method is used to create the directories in the current working directory. The syntax

to create the new directory is given below.

mkdir(?directory name?)

Example:

1. import os;

2.

3. #creating a new directory with the name new

4. os.mkdir("new")

Changing the current working directory:

The chdir() method is used to change the current working directory to a specified directory.

The syntax to use the chdir() method is given below.

1. chdir("new-directory")

Example
1. import os;

2.

3. #changing the current working directory to new

4.

5. os.chdir("new")

The getcwd() method:
This method returns the current working directory.

The syntax to use the getcwd() method is given below.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

1. os.getcwd()

Example
1. import os;

2.

3. #printing the current working directory

4. print(os.getcwd())

Deleting directory:
The rmdir() method is used to delete the specified directory.

The syntax to use the rmdir() method is given below.

1. os.rmdir(?directory name?)

Example
1. import os;

2.

3. #removing the new directory

4. os.rmdir("new")

Writing python output to the files:
In python, there are the requirements to write the output of a python script to a file.

The check_call() method of module subprocess is used to execute a python script and write the

output of that script to a file.

The following example contains two python scripts. The script file1.py executes the script file.py

and writes its output to the text file output.txt

file.py:

1. temperatures=[10,-20,-289,100]

2. def c_to_f(c):

3. if c< -273.15:

4. return "That temperature doesn't make sense!"

5. else:

6. f=c*9/5+32

7. return f

8. for t in temperatures:

9. print(c_to_f(t))

file.py:

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

1. import subprocess

2.

3. with open("output.txt", "wb") as f:

4. subprocess.check_call(["python", "file.py"], stdout=f)

Output:

50

-4

That temperature doesn't make sense!

212

The file related methods:
The file object provides the following methods to manipulate the files on various operating

systems.

SN Method Description

1 file.close() It closes the opened file. The file once closed, it can?t be read or write any

more.

2 File.fush() It flushes the internal buffer.

3 File.fileno() It returns the file descriptor used by the underlying implementation to request

I/O from the OS.

4 File.isatty() It returns true if the file is connected to a TTY device, otherwise returns false.

5 File.next() It returns the next line from the file.

6 File.read([size]) It reads the file for the specified size.

7 File.readline([size]) It reads one line from the file and places the file pointer to the beginning of the

new line.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

8 File.readlines([sizehint]) It returns a list containing all the lines of the file. It reads the file until the EOF

occurs using readline() function.

9 File.seek(offset[,from) It modifies the position of the file pointer to a specified offset with the specified

reference.

10 File.tell() It returns the current position of the file pointer within the file.

11 File.truncate([size]) It truncates the file to the optional specified size.

12 File.write(str) It writes the specified string to a file

13 File.writelines(seq) It writes a sequence of the strings to a file.

 Python Classes and Objects:

❮ PreviousNext ❯

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

https://www.w3schools.com/python/python_arrays.asp
https://www.w3schools.com/python/python_arrays.asp

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Create Object

Now we can use the class named myClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

The __init__() Function:
The examples above are classes and objects in their simplest form, and are not really useful in

real life applications.

To understand the meaning of classes we have to understand the built-in __init__() function.

All classes have a function called __init__(), which is always executed when the class is being

initiated.

Use the __init__() function to assign values to object properties, or other operations that are

necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Note: The __init__() function is called automatically every time the class is being used to create

a new object.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Object Methods:
Objects can also contain methods. Methods in objects are functions that belongs to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

Note: The self parameter is a reference to the class instance itself, and is used to access variables

that belongs to the class.

The self Parameter:

The self parameter is a reference to the class itself, and is used to access variables that belongs

to the class.

It does not have to be named self , you can call it whatever you like, but it has to be the first

parameter of any function in the class:

Example

Use the words mysillyobject and abc instead of self:

class Person:

 def __init__(mysillyobject, name, age):

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

 mysillyobject.name = name

 mysillyobject.age = age

 def myfunc(abc):

 print("Hello my name is " + abc.name)

p1 = Person("John", 36)

p1.myfunc()

Modify Object Properties:
You can modify properties on objects like this:

Example

Set the age of p1 to 40:

p1.age = 40

Delete Object Properties:

You can delete properties on objects by using the del keyword:

Example

Delete the age property from the p1 object:

del p1.age

Delete Objects:

You can delete objects by using the del keyword:

Example

Delete the p1 object:

del p1

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

DYNAMIC WEB PAGES:

Introduction

The basic idea behind dynamic pages is very simple - instead of preparing all necessary pages as

individual files, write a program that will create the pages as they are requested by the user. The

program itself can be do whatever you want, the only limitation is that it should produce a

HTML page as a result of its execution.

The following schema shows how a dynamic page is processed

1. The client asks the server for a specific page

2. The server finds the file and according to some rules in its configuration determines that

it is a dynamic page - that is it should not return the document itself but rather run it to

obtain the resulting document.

3. The server executes the source of the page (more on this below) and reads the output.

4. The server sends the output to the client. For the client it is undistinguishable from a

static page.

The most interesting part of the whole schema is part number 3 - the execution of the script. In

the simplest case of CGI(In computing, Common Gateway Interface (CGI) offers a

standard protocol for web servers to execute programs that execute like console

applications (also called command-line interface programs) running on a server that generates

web pages dynamically.), there is a program associated with the page that is responsible for

generating the resulting document. In more sophisticated cases, an interpreter of the source code

is build directly into the web-server (either hard-coded or as a module) and takes care of the

execution inside the server.

In case of Python, the most commonly used way to create dynamic pages is to

use mod_python module for the Apache web-server. This module creates an extra layer between

the server and the script which simplifies creation of dynamic pages.

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

Mod_python offers a few different ways to write server-side scripts, using the so called handlers.

The most commonly used handler is publisher that offers a good mix between flexibility and

ease of use.

In scripts interpreted by the publisher handler, each function acts as an individual page. This

means that if your script is called "test.py", you can access its function "hello" under the URL

"test.py/hello". In case you don't supply the name of the function (the URL is just "test.py"), the

result of a function called "index" is returned. This way you can create all the pages in one big

file, or you can have each page in a separate file with only the "index" function.

The following example demonstrates a very simple dynamic page using the publisher handler.

Zdroj: (dpages1-1.py)

 1 def index():

 2 return "<html><body><h1>Hello World</h1></body></html>"

dpages1-1.py.html

<html><body><h1>Hello World</h1></body></html>

Simple example

The following example shows a simple dynamic web-page created using the publisher handler of

mod_python.

The function index is run by default if no relative path is provided after the script name. The

function can be declared as having no arguments or it can have a req argument that will contain

a Request object. We will not use this object in the following examples, but it contains all the

information from the request HTTP headers - the URL, form attributes, etc. and might be useful

in more complicated scripts.

Zdroj: (dpages2-1.py)

 1 page_template = """

http://python.zirael.org/dpages1-1.py
http://www.python.org/doc/2.4.2/ref/return.html
http://python.zirael.org/outfiles/dpages1-1.py.html
http://python.zirael.org/dpages2-1.py

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

 2 <html>

 3 <head>

 4 <title>%s</title>

 5 </head>

 6 <body>

 7 %s

 8 </body>

 9 </html>"""

 10

 11

 12 def index(req):

 13 title = "Current time"

 14 import datetime

 15 body = "Current time is: "+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 16 return page_template % (title, body)

dpages2-1.py.html

<html>

</head>

<body>

Current time is: 2008-03-12 10:56:37

</body>

</html>

If a relative path is given, it selects a function inside the script.

URL:

dpages2-2.py/test

Zdroj: (dpages2-2.py)

 1 page_template = """

 2 <html>

 3 <head>

 4 <title>%s</title>

 5 </head>

http://www.python.org/doc/2.4.2/ref/import.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/node251.html#l2h-1860
http://www.python.org/doc/2.4.2/lib/datetime-datetime.html#l2h-1889
http://www.python.org/doc/2.4.2/ref/return.html
http://python.zirael.org/outfiles/dpages2-1.py.html
http://python.zirael.org/dpages2-2.py

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

 6 <body>

 7 %s

 8 </body>

 9 </html>"""

 10

 11

 12 def index():

 13 title = "Current time"

 14 import datetime

 15 body = "Current time is: "+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 16 return page_template % (title, body)

 17

 18 def test():

 19 return page_template % ("Test", "This is a test page")

dpages2-2.html

<html>

<head>

<title>Test</title>

</head>

<body>

This is a test page

</body>

</html>

Adding index as the relative path is the same as not giving it.

URL:

dpages2-2.py/index

Zdroj: (dpages2-2.py)

 1 page_template = """

 2 <html>

http://www.python.org/doc/2.4.2/ref/import.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/node251.html#l2h-1860
http://www.python.org/doc/2.4.2/lib/datetime-datetime.html#l2h-1889
http://www.python.org/doc/2.4.2/ref/return.html
http://www.python.org/doc/2.4.2/ref/return.html
http://python.zirael.org/outfiles/dpages2-2.py4539330648b80f94ef3bf911f6d77ac9.html
http://python.zirael.org/dpages2-2.py

PREPARED BY SANDEEP R,ASST.PROF

WEB PROGRAMMING MCET,CSE

 3 <head>

 4 <title>%s</title>

 5 </head>

 6 <body>

 7 %s

 8 </body>

 9 </html>"""

 10

 11

 12 def index():

 13 title = "Current time"

 14 import datetime

 15 body = "Current time is: "+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 16 return page_template % (title, body)

 17

 18 def test():

 19 return page_template % ("Test", "This is a test page")

dpages2-2.html

<html>

<head>

<title>Current time</title>

</head>

<body>

Current time is: 2008-03-12 10:56:37

</body>

</html>

http://www.python.org/doc/2.4.2/ref/import.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/module-datetime.html
http://www.python.org/doc/2.4.2/lib/node251.html#l2h-1860
http://www.python.org/doc/2.4.2/lib/datetime-datetime.html#l2h-1889
http://www.python.org/doc/2.4.2/ref/return.html
http://www.python.org/doc/2.4.2/ref/return.html
http://python.zirael.org/outfiles/dpages2-2.pye3ee8a3d01d8d6147afd0cb3f30176b1.html

